Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.
نویسندگان
چکیده
High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor's 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3.
منابع مشابه
First High Volume Via Process for Packaging and Integration of MEMS / CMOS
Silex Microsystems, a pure play MEMS foundry, offers a high density through silicon via technology that enables MEMS designs with significantly reduced form factor. The Through Silicon Via (TSV) process developed by Silex offers sub 50 μm pitch for through wafer connections in up to 600 μm thick substrates. Silex via process enables “all silicon” MEMS designs and true "Wafer Level Packaging" fe...
متن کاملNanophotonic integration in state-of-the-art CMOS foundries.
We demonstrate a monolithic photonic integration platform that leverages the existing state-of-the-art CMOS foundry infrastructure. In our approach, proven XeF2 post-processing technology and compliance with electronic foundry process flows eliminate the need for specialized substrates or wafer bonding. This approach enables intimate integration of large numbers of nanophotonic devices alongsid...
متن کاملPlanarization of a CMOS die for an integrated metal MEMS
This paper describes a planarization procedure to achieve a flat CMOS die surface for the integration of a MEMS metal mirror array. The CMOS die for our device is 4 mm x 4 mm and comes from a commercial foundry. The initial surface topography has 0.9 μm bumps from the aluminum interconnect patterns that are used for addressing the individual micro mirror array elements. To overcome the tendency...
متن کاملCMOS photodiodes based on vertical p-n-p junctions
A device composed of two junctions, but operating as a photodiode is designed and implemented in a pre-production 1 μm complementary-metal-oxide-semiconductor silicon technology foundry service. No process modification is performed. Tests are performed at a wavelength of 783 nm. Rise and fall times in the nanosecond range are reported along with sensitivity and bandwidth measurements. The suita...
متن کاملIntegration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes.
Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping of DNA-binding proteins involved in homologous recombination. While machining nanopores in dielectric membranes provides nanometer-scale precision, the rigid silicon support...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 24 15 شماره
صفحات -
تاریخ انتشار 2013